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Relation between wave-particle duality and quantum uncertainty
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We present a study of the relation between wave-particle duality and quantum uncertainty in a two-path
interferometer and derive equalities and inequalities involving the visibility (representing wave-like behavior),
the predictability (representing particle-like behavior), and their variances. We experimentally demonstrate that,
for a single photon in a Mach-Zehnder interferometer, these quantities are related via an equation that connects
both duality and uncertainty. This relation holds for the single-photon source prepared either in a pure state or a

mixed state.

DOI: 10.1103/PhysRevA.85.022106

I. INTRODUCTION

The principle of complementarity, which emphasizes
equally real but mutually exclusive properties of quantum
systems, is fundamentally important in the quantum theory.
It states that, for two conjugate variables, the observation of
one precludes the observation of the other. A consequence
of the complementarity principle is wave-particle duality.
The Young’s double-slit experiment provides a good example
of illustrating wave-particle duality [1,2]. The concept of a
quantum eraser and the consequent experiments shed light on
duality [3-7] and demonstrate that the observation of wave-
like and particle-like behaviors in, for example, a Young’s
double-slit experiment can even be made after the registration
of the quantum [8,9]. Recently, an experimental test of duality
relation [1,2,10,11] in an interferometer has been reported [ 12],
and the quantified wave information and particle information
can be varied to demonstrate the exchange procedure between
wave-like and particle-like behaviors [13]. There has been
heated debate whether the appearance or disappearance of
fringes in a double-slit experiment is due only to duality or
can be interpreted in terms of the Heisenberg uncertainty
relation. The relationship between the two principles has
been discussed in Feynman’s light microscope [14], Scully’s
quantum eraser [15], and Englert’s interferometer [16], but the
discussion continues [17-21].

Historically, one of the issues has been that, unlike
uncertainty relations, complementarity as espoused by Bohr
was not formulated in terms of a formal mathematical
relation. Recently, it has, however, been shown that the
predictability P (particle nature) and the visibility of the
fringes V (wave nature) are connected to each other through
the inequality P2 + V2 < 1 [16]. This inequality represents
a mathematical statement of complementarity but it does not
involve uncertainties. It is natural to ask whether there is a
relationship of P and V with the uncertainties and whether
this inequality can be converted to an equality by adding
terms involving uncerainties. In this paper, we answer these
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questions positively. We show explicitly how the visibility and
predictability and their fluctuations are related to each other.
In particular, we show that, for the single-photon case, an
equality is obtained that involves not only the visibility and
predictability but also their fluctuations. We also demonstrate
that this equality holds experimentally in a Mach-Zehnder
interferometer [22].

II. THEORY

The particle-like and wave-like behaviors of an electron
or a photon in a Mach-Zehnder interferometer (see Fig. 1)
is usually measured by the which-path information, i.e., the
predictability (P) and the visibility (V) of the interference
pattern [1,2,10,11,16,23], respectively. These are given by

P = |p1 — pal, (la)
V= Pmax — Pmin» (lb)

where pj) is the information knowing the probability of
passing through path 1 (2), and pmaxmin) is the probability
of the maximum (minimum) hits on the screen. The duality
relation is given by

PP+ViL, (2)

where the equal sign holds for pure states.

Quantum-mathematical descriptions of the visibility and
predictability in an interferometer for a single photon are given
by the Pauli operators [24-26],

A

P=6é., (3a)
V = cos ¢6, + sin g6, (3b)

where the phase parameter ¢ should be appropriately chosen
to maximize the expectation value of the operator, (3b). The
visibility and predictability are then the modules of the two
expectation values, i.e., P = [(P)|and V = |(V)max|. We note

A

that the two operators P and V are connected to each other
. . —ei? .
through a unitary transformation, U = %(e,lw f ), which

represents the combined action of the phase shifter (PZT) and
the 50:50 beam splitter (BS) (see Fig. 1).
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We choose {|1,0,),]011,)} as the basis for the single-photon
system, where the subscripts indicate the two paths, and the
two states represent one photon in path 1 or 2. A general state
for a single photon in such a basis can be described by a2 x 2

density matrix o = (! »*). Based on the quantum description
of the visibility and predictability in Eq. (3), we can derive

their expectation values [24,25],

A

P = |(P)| = |p11 — p2l, (4a)
V = (V)| = 2lp12l, (4b)
and their quantum uncertainties,
(AP)* = (P%) — ((P))* = 4p11p22, (52)
(AV)> = (V3 —((V)? =1 —4|ppl*. (5b)

In obtaining Eq. (4b) we have maximized the expectation value
of the operator, (3b), (V) = 2Re(pare™'?) = 2| pyy| cos(6 —
@), with 0 being the argument of p,;, by adjusting ¢ = 6.
From Egs. (4) and (5) we can establish a number of
inequalities and equalities. For example, we obtain

P2+ (AP =1, (6a)
V24 (AV)? = 1. (6b)
In order to understand the physical meaning of these equations,

we note that the duality relation P2+ V? < 1 can now be
rewritten in the form

P2
V2

(AV)?, (7a)

<
< (AP). (7b)

These inequalities play the role of uncertainty relations
for the visibility and the predictability, as the maximum
visibility (V = 1) would require the maximum uncertainty
in the predictability (AP = 1), and vice versa. We also
note that the four quantities in Eqs. (4) and (5) satisfy the
equality,

P24+ V24 (AP +(AV)? =2. (®)

This establishes a relation between the duality and the quantum
uncertainty for the single-photon system. Equation (8) is
a general equation for the duality. This relation, however,
is restricted in the sense that the choice of P and V
determines uniquely the values of the uncertainties AV and
AP, respectively, via Egs. (6).

These relations between the visibility and predictability
and their variances can be tested in an experiment. We present
results that satisfy relation (8). However, from the data, we can
see that, for both pure and mixed states, all the inequalities and
equalities mentioned above are satisfied.

III. EXPERIMENTS

In our experiment, the measurement is performed on an
ensemble of single photons passing through the interferometer
and recording the photon counting. For the measurement
of visibility, we have to appropriately adjust the PZT to a
particular value so that the counting difference between the two
detectors D and D, is maximized within a fixed time interval,
e.g., I s. The probabilities in Eq. (1b) are thus derived through
Pmax(min) = Nmax(min)/(Nmax + Nmin)a with Nmax(min) being the

PHYSICAL REVIEW A 85, 022106 (2012)

FIG. 1. (Color online) Experimental setup: polarized single
photons produced from parametric down-conversion are sent to a
Mach-Zehnder interferometer, where VBS is a beam splitter with
adjustable reflectivity (R), PZT is a phase shifter, BS is a 50:50 beam
splitter, and Dy and D, are two single-photon detectors.

photon counting recorded by D; and D,, respectively. For the
measurement of predictability, which is independent of the
phase difference between the two paths, we need to remove
BS in Fig. 1 and determine the probabilities in Eq. (1b) through
P12y = Niy/(N1 + N»), with Ny () being the photon counting
in detector Dy(y). With the measured pmax (or p1) and pmin
(or py), we determine the visibility and predictability through
relations (1b) and (1a), and their variances through

(Av)z = (Apmax)2 + (Apmin)2 - 2A(pmaxpmin)v (93-)
(AP)? = (Ap1)* + (Ap2)* — 2A(p1p2). (9b)

The probabilities, variances, and covariances in Egs. (1a),
(1b), (9a), and (9b) are achievable from the photon counting
recorded by detectors D; and D;.

We use the second harmonic generation from a Ti:sapphire
laser at 850 nm with pulse width 180 fs and repetition rate
76 M to pump a 4 x 4 x 0.6 mm SB-barium borate (BBO)
crystal generating 850-nm orthogonally polarized photon pairs
through type II parametric down-conversion. One of the two
photons is chosen as the single-photon source to feed the
interferometer (see Fig. 1). The quality of the single-photon
source is tested through the coincidence counts of detectors
D; and D, [12,13], with the coincidence counts no more than
3 among 2100 photons recorded within a time of 0.36 s. The
random dark and background counts are about 100 per second.
The bin width of each single-photon detector is set at 4 ns.
In the experiment, the variable BS (VBS) is composed of a
half-wave plate followed by a polarization BS, and the second
BS, at the output, is composed of two polarization BSs with a
half-wave plate in the middle.

The VBS with adjustable reflectivity R turns the single
photon into the superposition,

|®) = /T — R[1,0,) + vRe |0, 1), (10)

where 6 is the phase difference between the two paths, induced
by the VBS and also the length difference of the two paths.
To maximize the visibility based on the above state, the phase
shift ¢, controlled by the PZT, should be set at ¢ = 6. In this
case, the visibility operator in (3b) becomes V= (e([)e e;)’g). For
measurement of the predictability P, we remove the BS and
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count the difference between the two detectors. This yields the
measurement of &,.

The experimental setup (see Fig. 1) used here by us is a
little different from the one used in Ref. [13]: The locations
of the 50:50 BS and the VBS are exchanged in the two
experiments. In Ref. [13], the particle information is measured
after the interference of the photons inside the interferometer,
and it is classified as a posteriori distinguishability. In this
situation, the single photons are fed into the two paths
of the interferometer with equal probability, and the path
distinguishability is measured through an unbalanced output
BS. Given the balanced photon flux along the two paths of
the interferometer, the unbalanced output BS changes the
photon’s path distinguishability by varying its reflectivity.
In our experiment, we demonstrate the duality of the single
photons in another way. The initial state of the single photon is
variable here, which leads to an unbalanced and controllable
photon flux into the two paths of the interferometer, and the
particle information is directly determined by the initial state of
the single photon. This type of particle information, associated
with an unbalanced photon flux inside the interferometer, i.e.,
predictability, is called a priori distinguishablity in Ref. [13].
In fact, many theoretical works on duality are based on a
variable initial state for the single photon, with the which-way
information referred to as the predictability, as in Refs. [26]
and [27]. In the Appendix, we show explicitly that the two
experimental schemes are equivalent for demonstrating the
photon’s duality as well as the corresponding measurement
uncertainties.

IV. RESULTS AND DISCUSSION

The theoretical values of visibility and predictability
[13,16], V =24/R(1 — R) and P = |1 — 2R|, and their vari-
ances versus R are obtained from Egs. (5) and (10); see
the curves in Fig. 2. The points with error bars are the
experimental results for the squared visibility [dotted (blue)
line], the predictability [dashed (burgundy) line], and their
sum [solid (red) line] in Fig. 2(a), and for the two variances
and their sum (using the same colors and the same types of line)
in Fig. 2(b). The total sum of the four quantities in Eq. (8) is
plotted in Fig. 2(c), which confirms that Eq. (8) is satisfied. The
sum of the four quantities is 2.0 £ 0.11. Note that the results
for R = 0.5 to 1.0 are the same as those for R = 0.5 t0 0.0. In
the experiment, the highest visibility is 0.91, which is lower
than the theoretical value of 1. This discrepancy is caused due
to the unbalanced probability of the photons entering the two
paths in the interferometer, decoherence of the flying photons,
imperfect overlap of the two interfering paths at the output,
and unequal detection efficiencies of the detectors.

Next we examine Eq. (8) for a single photon in a complete
mixed state (no off-diagonal elements):

p = (1= R)[1102)(1102] + R|0112)(0112]. Y

This state is realized by completely randomizing the phase
difference between the two paths in the interferometer. Using
the same method, we measured the squared visibility, the
predictability, and their variances (see Fig. 3). As expected,
almost-vanishing visibility is observed for any R, while the
predictability presents the same behavior as in the pure-state
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FIG. 2. (Color online) (a) Squared visibility [dotted (blue) line],
predictability [dashed (burgundy) line), and their sum [solid (red)
line] for the state of Eq. (10). (b) Their variances, using the same
colors and the same types of line. (c) Total sum of the four quantities.
The x axis is the reflectivity R of the VBS.

case. The missing particle information (for increasing R) does
not turn to the wave knowledge of visibility [see Fig. 3(a)]; it
causes an increase in uncertainty [see Fig. 3(b) and keeps the
sum of the four quantities equal to 2.0 £ 0.1.

If we prepare the system in a state between the pure
state, Eq. (10), and the completely mixed one, Eq. (11)
(off-diagonal elements not equal to 0), we observe a similar
result, with the total sum being 2.0 = 0.11. We have thus shown
that the complementary relation between the duality and the
uncertainty, Eq. (8), holds for both pure and mixed states.

V. CONCLUSIONS

We note, in conclusion, that although the derivation of the
duality, Eq. (2), does not require Heisenberg’s uncertainty
relation, this does not mean that the duality has to be
independent of the quantum uncertainty. In this paper we
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FIG. 3. (Color online) The same as Fig. 2, for the mixed state of
Eq. (11).
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have elucidated the relationship between the two. We note
that, in the case of mixed states, the duality relation presents
only an incomplete description of the exclusive relation
between wave-like and particle-like behaviors. Our results
indicate the intricate relationship between duality and quantum
uncertainty. In particular, Eq. (8), which holds for both pure
and mixed states, tells us that the missing duality information in
fact causes an increase in total uncertainty in the same system.
In other words, although neither the duality relation, Eq. (2),
nor the quantum uncertainty (represented by the sum of the two
variances) can be considered a direct consequence of the other,
the duality and quantum uncertainty are intrinsically connected
to each other. By feeding the Mach-Zehnder interferometer
with single photons and detecting them at the single-photon
level, we have experimentally verified this relation for pure or
mixed states of a single-photon.
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APPENIDX: AN EQUIVALENCE PROOF FOR THE TWO
TYPES OF EXPERIMENTAL SETUPS

A schematic of the two types of experimental setups used in
the present work and in the work in Ref. [13] is shown in Fig. 4.
The main difference is that the locations of the variable VBS
and the 50:50 BS are exchanged in these two experimental
setups. In the following, we prove that the two experimental
schemes are equivalent to each other for demonstrating a
photon’s duality.

The action of a BS with reflectivity R can be represented
V125, which
connects the annihilation operators, aiyi(2), of the input beams
of the BS and the creation operators, doyi(2), of the output
beams of the BS via

(aout1> = Ug (ainl) )
Aour2 Ain2
In the following, we describe the action of the 50:50 BS by

the unitary transformation Ui = f( 1 1) and the action of

the variable BS by the umtary transformation Uk, mentioned
above.

by aunitary transformation [28], Ugr = (7\/‘{%

(AL)

\b N b N A
N B A —\
(50:50) VBS
¢ VBS{f o wielt
) (50:50)N,
’/ e D I’/ e\D
U V)

(a) (b)

FIG. 4. (Color online) Schematic of the experimental setup used
(a) in the work in Ref. [13] and (b) in this work.
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In the first experimental setup [see Fig. 4(a)], the combina-
tion of the 50:50 BS, the PZT, represented by the unitary

transformation S = ((]) e&), and the VBS connects the two

annihilation operators for the photons in the input beams, a
and b, and the annihilation operators for the photons in the
output beams, e and f, by the following:

() - )

_ VR—JT=Re® J/R+JT—Re? \/(a
= 55 (V=R R s vies) )

(A2)

The visibility is then measured through the operator V; =
(?Z;—% with the subscript 1 indicating the first experimental
scheme in Fig. 4(a). In terms of the creation and annihilation

operators a', b', a, and b, this can be described as
Vi = (aT +bTb — {2/R(1 — R)cos¢p(b'b — a'a)
+@2R - 1)(a'b+ bla)

—2i/R(1 — R)sing(b'a — a'b)}. (A3)

Similarly, the combination of the VBS, the PZT, and the
50:50 BS in the second experimental setup in Fig. 4(b)
connects the four annihilation operators, a, b, e, and f, for
the photons in the input and the output beams by

() -w )

. VR —J/T=Re'? JT=R+Re?\ (e
2 (—«/ﬁ— VT—Re'? —m—i-«/ﬁe"‘b) ( )
(A4)
ele—fif

The operator V, = Ter A for the measurement of visibility
in this scheme is then equivalent to

Vo=— (2/R(1 = R)cos¢p(b'b — a'a)

(ata + bTb) bTb
+2Rcos¢(a’b + bla) — (a'be™® + blae'®)}. (A5)

Given the same input state |yo) = |1,0,) for both experi-
mental setups in Fig. 4, it can be shown that the interference
patterns in both types of interferometers exhibit the same
visibility, i.e.,

V = [(YolVi21¥0)max| = 2v/R(1 = R). (A6)

The quantum fluctuation of measurements of the visibility can
be evaluated as

(AV): = (Yol Vi Wo) — V1o = (1 — 2R (A7)

To measure the which-way information, i.e., distinguisha-
bility in Ref. [13] and predictability in the present work, one
of the two paths inside the interferometer, e.g., path ¢, should
be blocked in the first experimental scheme [see Fig. 4(a)] or,
equivalently, the 50:50 BS should be removed in the second
experimental scheme [see Fig. 4(b)]. By ignoring the photons
blocked in the first experiment, which are not included in any
photon counting in the experiment, the annihilation operator a
for the input photons is connected to the annihilation operators
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e and f for the output photons by

()" =) o

A similar relation can be established in the second experimen-
tal scheme, which is

e\  (—vT—Re? Re?\ (a (A9)
) VR VI=R)\b)"
Accordingly, the operator % for evaluating the particle

information in the interferometer can be rewritten as

(1 =2R)ata —cfe) + 2/ R = R) (e ®ate + e¢cla)

D=
{(ata + cte)

(A10a)

for the distinguishability in the first experimental scheme in
Fig. 4(a) and as

(1=2R)ata—b'b)—2/RO—=R)a'b+bla)

P= .
{(ata + bth)

(A10b)
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for the predictability in the second experimental scheme in
Fig. 4(b).

Imposing the above two operators on the initial state |y) =
[1,0p) (or [¥r)) = [1,0c)), we get the expectation value of the
distinguishability in the first experimental scheme to be

D = [(y|DIyg)| = |1 — 2R (Alla)

and the predictability in the second experimental scheme to be

P = (4] Plypo)| = |1 = 2R|.

The uncertainties of measuring the distinguishability and
predictability are

(A11b)

(AD)* = (yy|D*|y) — D* =4R(1 — R)  (Al2a)

and

(APY? = (Yol P*|ypo) — P> =4R(1 — R), (Al12b)

respectively. Since all the results of measuring the particle
information and the wave information are identical for the two
types of interferometers, we believe they are equivalent for
demonstrating the photon’s duality.
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